The term engineering is derived from the Latiningenium, meaning "cleverness". (Full article...)
Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the limitations imposed by practicality, regulation, safety and cost. The word engineer (Latiningeniator, the origin of the Ir. in the title of engineer in countries like Belgium, The Netherlands, and Indonesia) is derived from the Latin words ingeniare ("to contrive, devise") and ingenium ("cleverness"). The foundational qualifications of a licensed professional engineer typically include a four-year bachelor's degree in an engineering discipline, or in some jurisdictions, a master's degree in an engineering discipline plus four to six years of peer-reviewed professional practice (culminating in a project report or thesis) and passage of engineering board examinations. (Full article...)
Featured articles are displayed here, which represent some of the best content on English Wikipedia.
The production of renewable energy in Scotland is an issue that has come to the fore in technical, economic, and political terms during the opening years of the 21st century. The natural resource base for renewable energy is extraordinary by European, and even global standards, with the most important potential sources being wind, wave, and tide.
At the end of 2015, there was 7,723 megawatts (MW) of installed renewable electricity capacity in Scotland, an increase of 5.5% (or 406 MW) from the end of 2014. Renewable electricity generation in Scotland was 21,983 GWh in 2015, up 15.2% on 2014. 57.7 per cent of Scotland's electricity came from renewables in 2015. Scottish renewable generation makes up approximately 26.4% of total UK renewable generation (down from 32% in 2014). In 2014, Scotland exported over 24 per cent of generation. (Full article...)
The Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain-rate test which determines the amount of energy absorbed by a material during fracture. This absorbed energy is a measure of a given material's notch toughness and acts as a tool to study temperature-dependent ductile-brittle transition. It is widely applied in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply. A disadvantage is that some results are only comparative.
The test was developed around 1900 by S.B. Russell (1898, American) and Georges Charpy (1901, French). The test became known as the Charpy test in the early 1900s due to the technical contributions and standardization efforts by Charpy. The test was pivotal in understanding the fracture problems of ships during WWII.
Today it is utilized in many industries for testing materials, for example the construction of pressure vessels and bridges to determine how storms will affect the materials used.
A chicken gun or flight impact simulator is a large-diameter, compressed-air gun used to fire bird carcasses at aircraft components in order to simulate high-speed bird strikes during the aircraft's flight. Jet engines and aircraft windshields are particularly vulnerable to damage from such strikes, and are the most common target in such tests. Although various species of bird are used in aircraft testing and certification, the device acquired the common name of "chicken gun" as chickens are the most commonly used 'ammunition' owing to their ready availability. (Full article...)
Project Alberta was formed in March 1945, and consisted of 51 United States Army, Navy, and civilian personnel, including one British scientist. Its mission was three-fold. It first had to design a bomb shape for delivery by air, then procure and assemble it. It supported the ballistic testing work at Wendover Army Air Field, Utah, conducted by the 216th Army Air Forces Base Unit (Project W-47), and the modification of B-29s to carry the bombs (Project Silverplate). After completion of its development and training missions, Project Alberta was attached to the 509th Composite Group at North Field, Tinian, where it prepared facilities, assembled and loaded the weapons, and participated in their use. (Full article...)
Image 3
Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually meant to specify the value of any multiplicative constant, which will give the area under the function. The other convention is to write the area next to the arrowhead. In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
Beryl May DentMIEE (10 May 1900 – 9 August 1977) was an English mathematical physicist, technical librarian, and a programmer of early analogue and digital computers to solve electrical engineering problems. She was born in Chippenham, Wiltshire, the eldest daughter of schoolteachers. The family left Chippenham in 1901, after her father became head teacher of the then recently established Warminster County School. In 1923, she graduated from the University of Bristol with First Class Honours in applied mathematics. She was awarded the Ashworth Hallett scholarship by the university and was accepted as a postgraduate student at Newnham College, Cambridge.
She returned to Bristol in 1925, after being appointed a researcher in the Physics Department at the University of Bristol, with her salary being paid by the Department of Scientific and Industrial Research. In 1927, John Lennard-Jones was appointed Professor of Theoretical physics, a chair being created for him, with Dent becoming his research assistant in theoretical physics. Lennard‑Jones pioneered the theory of interatomic and intermolecular forces at Bristol and she became one of his first collaborators. They published six papers together from 1926 to 1928, dealing with the forces between atoms and ions, that were to become the foundation of her master's thesis. Later work has shown that the results they obtained had direct application to atomic force microscopy by predicting that non-contact imaging is possible only at small tip-sample separations. (Full article...)
Image 6
The Avrocar S/N 58-7055 (marked AV-7055) on its rollout.
The Avro Canada VZ-9 Avrocar is a VTOL aircraft developed by Avro Canada as part of a secret U.S. military project carried out in the early years of the Cold War. The Avrocar intended to exploit the Coandă effect to provide lift and thrust from a single "turborotor" blowing exhaust out of the rim of the disk-shaped aircraft. In the air, it would have resembled a flying saucer.
Originally designed as a fighter-like aircraft capable of very high speeds and altitudes, the project was repeatedly scaled back over time and the U.S. Air Force eventually abandoned it. Development was then taken up by the U.S. Army for a tactical combat aircraft requirement, a sort of high-performance helicopter. In flight testing, the Avrocar proved to have unresolved thrust and stability problems that limited it to a degraded, low-performance flight envelope; subsequently, the project was cancelled in September 1961. (Full article...)
Nichols remained with the Manhattan Project after the war until it was taken over by the Atomic Energy Commission in 1947. He was the military liaison officer with the Atomic Energy Commission from 1946 to 1947. After briefly teaching at the United States Military Academy at West Point, he was promoted to major general and became chief of the Armed Forces Special Weapons Project, responsible for the military aspects of atomic weapons, including logistics, handling and training. He was deputy director for the Atomic Energy Matters, Plans and Operations Division of the Army's general staff, and was the senior Army member of the military liaison committee that worked with the Atomic Energy Commission. (Full article...)
Image 8
ODB++ is a proprietary CAD-to-CAM data exchange format used in the design and manufacture of electronic devices. Its purpose is to exchange printed circuit board design information between design and manufacturing and between design tools from different EDA/ECAD vendors. It was originally developed by Valor Computerized Systems, Ltd. (acquired in 2010 by Mentor Graphics which was later acquired by Siemens in 2016) as the job description format for their CAM system.
ODB stands for open database, but its openness is disputed, as discussed below. The '++' suffix, evocative of C++, was added in 1997 with the addition of component descriptions. There are two versions of ODB++: the original (now controlled by Mentor) and an XML version called ODB++(X) that Valor developed and donated to the IPC organization in an attempt to merge GenCAM (IPC-2511) and ODB++ into Offspring (IPC-2581). (Full article...)
The tubes were constructed using the shield method and are each 6,550 feet (2,000 m) long and 15.5 feet (4.7 m) wide. The interiors are lined with cast-iron "rings" formed with concrete. The tubes descend 91 to 95 feet (28 to 29 m) below the mean high water level of the East River, with a maximum gradient of 3.1 percent. During the tunnel's construction, a house at 58 Joralemon Street in Brooklyn was converted into a ventilation building and emergency exit. (Full article...)
Image 11
Fizeau–Foucault apparatus may refer to either of two nineteenth-century experiments to measure the speed of light:
A hypothetical depiction of a Dyson swarm surrounding a star
A Dyson sphere is a hypothetical megastructure that encompasses a star and captures a large percentage of its power output. The concept is a thought experiment that attempts to imagine how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet's resources alone. Because only a tiny fraction of a star's energy emissions reaches the surface of any orbiting planet, building structures encircling a star would enable a civilization to harvest far more energy.
The first modern imagining of such a structure was by Olaf Stapledon in his science fiction novel Star Maker (1937). The concept was later explored by the physicist Freeman Dyson in his 1960 paper "Search for Artificial Stellar Sources of Infrared Radiation". Dyson speculated that such structures would be the logical consequence of the escalating energy needs of a technological civilization and would be a necessity for its long-term survival. A signature of such spheres detected in astronomical searches would be an indicator of extraterrestrial intelligence. (Full article...)
Image 14
Overhead View of Tehachapi Energy Storage Project, Tehachapi, CA
The Tehachapi Energy Storage Project (TSP) was a 8MW/32MWhlithium-ion battery-based grid energy storage system at the Monolith Substation of Southern California Edison (SCE) in Tehachapi, California, sufficient to power between 1,600 and 2,400 homes for four hours. At the time of commissioning in 2014, it was the largest lithium-ion battery system operating in North America and one of the largest in the world. TSP is considered to be a modern-day energy storage pioneer with significant accomplishments that have proven the viability of utility-scale energy storage using lithium-ion technology. While originally envisioned as a research and development project, TSP operated as a distribution-level resource for SCE and for calendar year 2020, SCE reported that TSP operated in the wholesale energy market with revenue exceeding operating and maintenance costs. In 2021, SCE began the decommissioning of TSP, which was followed by formal decommissioning by state regulators in 2022. The physical dismantlement of TSP is expected to be completed by the end of 2022. (Full article...)
The Castaing machine is a device used to add lettering and decoration to the edge of a coin. Such lettering was necessitated by counterfeiting and edge clipping, which was a common problem resulting from the uneven and irregular hammered coinage. When Aubin Olivier introduced milled coinage to France, he also developed a method of marking the edges with lettering which would make it possible to detect if metal had been shaved from the edge. This method involved using a collar, into which the metal flowed from the pressure of the press. This technique was slower and more costly than later methods. France abandoned milled coinage in favour of hammering in 1585.
England experimented briefly with milled coinage, but it wasn't until Peter Blondeau brought his method of minting coins there in the mid-seventeenth century that such coinage began in earnest in that country. Blondeau also invented a different method of marking the edge, which was, according to him, faster and less costly than the method pioneered by Olivier. Though Blondeau's exact method was secretive, numismatists have asserted that it likely resembled the later device invented by Jean Castaing. Castaing's machine marked the edges by means of two steel rulers, which, when a coinage blank was forced between them, imprinted legends or designs on its edge. Castaing's device found favour in France, and it was eventually adopted in other nations, including Britain and the United States, but it was eventually phased out by mechanised minting techniques. (Full article...)
The following are images from various Engineering-related articles on Wikipedia.
Image 1Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized. (from Engineering)
Image 2The InSight lander with solar panels deployed in a cleanroom (from Engineering)
Image 5The application of the steam engine allowed coke to be substituted for charcoal in iron making, lowering the cost of iron, which provided engineers with a new material for building bridges. This bridge was made of cast iron, which was soon displaced by less brittle wrought iron as a structural material. (from Engineering)
Image 11A drawing for a steam locomotive. Engineering is applied to design, with emphasis on function and the utilization of mathematics and science. (from Engineering)
Image 12Archimedes is regarded as one of the leading scientists in classical antiquity whose ideas have underpinned much of the practice of engineering. (from Engineer)
This list was generated from these rules. Questions and feedback are always welcome! The search is being run daily with the most recent ~14 days of results. Note: Some articles may not be relevant to this project.