Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.
Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.
The language of ILM extends that of classical propositional logic by adding the unary modal operator
and the binary modal operator
(as always,
is defined as
). The arithmetical interpretation of
is “
is provable in Peano arithmetic (PA)”, and
is understood as “
is interpretable in
”.
Axiom schemata:
- All classical tautologies
![{\displaystyle \Box (p\rightarrow q)\rightarrow (\Box p\rightarrow \Box q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/378bbb022b019f390c5aedc4c0581f32a3179ea6)
![{\displaystyle \Box (\Box p\rightarrow p)\rightarrow \Box p}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3da9af6a03a02c8c77dbd4d7dfc7b44088d73723)
![{\displaystyle \Box (p\rightarrow q)\rightarrow (p\triangleright q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3457bdfc4985887cd10a942e816114b1e5027af)
![{\displaystyle (p\triangleright q)\rightarrow (\Diamond p\rightarrow \Diamond q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f603b81ca91e1edeb0a7e4ae78cbc021093d118e)
![{\displaystyle (p\triangleright q)\wedge (q\triangleright r)\rightarrow (p\triangleright r)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12aae21987dcc4fbe69d248ed260bbcd04038c7e)
![{\displaystyle (p\triangleright r)\wedge (q\triangleright r)\rightarrow ((p\vee q)\triangleright r)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d6dfce7718e6f6a1b6bf55f37bc6351079848a4)
![{\displaystyle \Diamond p\triangleright p}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b757c99196fa942ea816b101b462eac2e0b8d46)
![{\displaystyle (p\triangleright q)\rightarrow ((p\wedge \Box r)\triangleright (q\wedge \Box r))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ff3f034ab104e014116bd12794e03074c2337c7)
Rules of inference:
- “From
and
conclude
”
- “From
conclude
”.
The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.
The language of TOL extends that of classical propositional logic by adding the modal operator
which is allowed to take any nonempty sequence of arguments. The arithmetical interpretation of
is “
is a tolerant sequence of theories”.
Axioms (with
standing for any formulas,
for any sequences of formulas, and
identified with ⊤):
- All classical tautologies
![{\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p\wedge \neg q,{\vec {s}})\vee \Diamond ({\vec {r}},q,{\vec {s}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/636d62fa1cbf2ecce25c6991886673818e91c463)
![{\displaystyle \Diamond (p)\rightarrow \Diamond (p\wedge \neg \Diamond (p))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/94edb2d602402f12a79aa26a169529b18a60f743)
![{\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},{\vec {s}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/204d8bc1e3ad8310a378285ac3a96d85dd49a49a)
![{\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p,p,{\vec {s}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ad0e0687516c002fb6ecda0ad22c8fafdbf5d26)
![{\displaystyle \Diamond (p,\Diamond ({\vec {r}}))\rightarrow \Diamond (p\wedge \Diamond ({\vec {r}}))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e885de7dfcddc85e3f0e1eb605ae1697ccd6ebe)
![{\displaystyle \Diamond ({\vec {r}},\Diamond ({\vec {s}}))\rightarrow \Diamond ({\vec {r}},{\vec {s}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/317a7cd369c083d2b50c2d1adf774a238484e75e)
Rules of inference:
- “From
and
conclude
”
- “From
conclude
”.
The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.